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Abstract: Azadi et al. [Generalization of Splitting off Operation to Binary Matroids, Electronic Notes in Discrete
Math, 15 (2003), 186—-188] have generalized the splitting off (or in short split-off) operation on graphs to binary
matroids. The dual of a split-off matroid is not always equal to the split-off of dual of the original matroid. In
this paper, for a given matroid M and two elements = and y from E(M), we first characterize the cobases of
the split-off matroid M, in terms of the cobases of the matroid M. Then, by using the set of cobases of M,
and the set of bases (Azadi characterized this set) of (M*),,, we characterize those binary matroids for which
(Mzy)* = (M*)4y. Indeed, for a binary matroid M on a set E with z,y € E, we prove that (M,,)* = (M™),, if
and only if M = N @& N’ where N is an arbitrary binary matroid and N’ is Up 2 or Uz 5 such that z,y € E(N’).
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1 Introduction

The matroid notation and terminology used here will
follow Oxley [5]. A matroid M is a pair (E,Z) con-
sisting of a finite set £ and a collection Z of subsets
E having the following properties:

I 0ex.
I2) fIeZand I’ C I, thenl' €.

(I3) If I; and I are two members of Z and |I1]| <
|I2|, then there is an element e of Iy — I such
that I; U {e} € 7.

The collection Z forms the independent sets of M, and
the set F is called the ground set of M. We shall often
write Z(M ) for Z and E(M) for E, particularly when
several matroids are being considered. A maximal in-
dependent set in M is called a basis or a base of M.
If B (or B(M)) be the collection of all bases of M, the
matroid M can be defined in terms of its bases and is
denoted by the pair (E, B). The collection 5 has the
following properties:

(B1) B is non-empty.

(B2) If By and By are in B and x € By — Bs, then
there is an element y of By — By such that (B —

{z})Ufy} e B.

An alternate version of (B2) says that if B and B»
are bases of a matroid M, then |B;| = |Bs|. For a

E-ISSN: 2224-2880

423

given matroid M with a basis B, the rank of M is the
cardinality of B and is denoted by 7(M). Let M be a
matroid on the ground set £ and B*(M) be { E(M) —
B : B € B(M)}. Then B*(M) is the set of bases of a
matroid on E(M ). The matroid, whose ground set is
E(M) and whose set of bases is B*(M), is called the
dual of M and is denoted by M*. The bases of M*
are called cobases of M and the rank of M* is called
the corank of M and is denoted by r*(M). Clearly,
(M) = |B(M)| — r(M).

Let FF be a field and let £ C F* be a finite set of
vectors. Then a linear matroid is a matroid whose
bases are the maximal linearly independent sets of
vectors in E over F. A binary matroid is a linear ma-
troid over the finite field GF'(2). The matroid just ob-
tained from the matrix A is called the vector matroid
of A.

Two matroids My = (E1,B;1) and M, =
(B2, By) are isomorphic if there exists bijection ¢ :
2(F1) — 2(E2) guch that X € By if and only if
¢(X) € By. If M and M’ are two isomorphic ma-
troids, then (M) = r(M') and r*(M) = r*(M").

The definitions of two important classes of ma-
troids and duals of them, which will be used in this
paper are formally described as follows.

Definition 1. Let m and n be non-negative integers
with m < n. Let E be an n-element set and B be the
collection of m-element subsets of E. Then this ma-
troid called the uniform matroid on n-element set and
denoted by Uy, 5.
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Clearly, the dual of Uy, 5, is Up—y n-

Definition 2. Let My and My be matroids on disjoint
sets By and Ey. Let E = E1 U Ey and
B = {Bl UBy: By € B(Ml) and By € B(MQ)}
(D
Then (E,B) is a matroid and called the direct
sum of M1 and My and is denoted by My & M.

Clearly, if M = M;® M>, then M* = M| ® M.
Splitting off operation for graphs was introduced
by Lovasz [4] as follows. Let G be a graph and
T = vv, y = vve be two adjacent non-loop edges in
G. Let Gy be the graph obtained from G by adding
the edge viv9 and deleting the edges x and y. The
transition from G to G, is called a splitting off (or in
short split-off) operation. The split-off operation has
important applications in graph theory [3], [4]. Apply-
ing this operation is a well-known and useful method
for solving problems in graph connectivity and it may
decrease the edge connectivity of the graph.
Shikare, Azadi and Waphare [6],[7] extended
the notion of the split-off operation from graphs to bi-
nary matroids as follows.

Definition 3. Let M be a binary matroid on a set £
and let x,y € E. Let A be a matrix that represents
M over GF(2) and Ay, be the matrix obtained from
A by adjoining an extra column, with label o, which
is the sum of the columns corresponding to x and v,
and then deleting the two columns corresponding to x
and y. Let My, be the vector matroid of the matrix
Agy. The transition from M to My, is called a split-
off operation and the matroid M, is referred to the
split-off matroid.

Definition 4. Two non-loop (a loop is a minimal sin-
gleton set which is not independent) elements x and y
from binary matroid M are called equivalent, if every
basis of M contains at least one of x and y. Note that
two coloops of M (loops of M*) are equivalent.

For a given binary matroid M and two elements
x and y from E(M), we denote by x ~ y the two
equivalent elements x and y and, otherwise, we denote
by x ~ y. The next proposition provides a useful
characterization of bases of M, in terms of the bases
of M.

Proposition 5. ([6]) Let M be a binary matroid on a
set E and x,y € E such that o ¢ E. Let B and By,
be the set of bases of M and M, respectively. Then

() If z ~ y, then B,y = B1 U By where

E-ISSN: 2224-2880

424

Vahid Ghorbani, Ghodratollah Azadi, Habib azanchiler

_Blz{B—{x}:BEB,zEBandygB}:
{B—{y}:BGB,x&BandyEB}

- By = {(B—{x,y})u{a}:BEBandm,yE

B}.
(i) If © ~ y, then By, = B} U B, U BY where

_ Bi:{B:BEBandm,y%B};

B, = {(B—{x})u{a} .BeB,zeB,y¢ B
and (B — {«}) U{y} ¢ B}:

By ={(B-{yhula}:BeB o ¢ B ye
Band (B—{y})U{z} ¢ B}.
By the last proposition, we deduce that if x ~ y

in M, then r(Myy) = r(M)—1, otherwise r(M,) =
r(M).

2 Cobases of the split-off matroid

In this section, we characterize the cobases of the
split-off matroid M, in terms of the cobases of M.
We denote by (B,,)* the set of cobases of the split-
off matroid M,,,.

Theorem 6. Let M = (E,B) be a binary matroid
with collection of bases B and M* = (E,B*) be the
dual of M with collection of bases B*. Let v,y € FE
such that o ¢ E, and let By, and (Byy,)* be the
collections of bases of My, and (My,)*, respectively.
Then

() If v ~ yin M, then (Byy)* = (B1)* U(B2)* where
- (By)* = {(B* —aUula): B e B x e
B* and y ¢ B*} - {(B* gy U{a): B e
B*, x ¢ B*andy € B*};
- (By)* = {B* :B*eB*and x,y ¢ B*}.

(i) If z »~ y in M, then (Byy)* = (B'1)* U (B'2)* U
(B'3)* where

(B = {(B —{zyhuia} : B €
B*and x,y € B*};
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- (Bly)" = {(B*—{:p}) . B* € B,z € B*, y¢
B*and (B~ {x}) U{y} ¢ B |

By ={(B —{y)): B eB ¢ B ye
B* and (B* — {y}) U {z} ¢ B*}.

Proof. Suppose that E’ be the ground set of M.
Clearly, E — E' = {z,y} and E' — E = {a}. To
prove (i) and (ii), we shall show that every member of
(Bzy)* is a basis of (My,)* and every basis of (M, )*
is a member of (B,,)*.

(i) Suppose thatz ~ yin M, and Bf € (B;1)*. Then
B} = (B*—{z})U{a} where B* € B* ,z € B*
andy ¢ B*, or B} = (B* — {y}) U {a} where
B* € B*,x ¢ B*and y € B*. In the first
case, B/ — Bf = F' — [(B* — {z}) U {a}] =
(B—{y})where B= F—B*andsox ¢ B,y €
B. By Proposition 5(i), (B — {y}) is a basis of
M,,,. We conclude that BY is a basis of (Mg,)*.
Similarly, in the second case, B7 is a basis of
(Mzy)*. Now suppose B; € (B2)*. Then By =
B*and z,y ¢ B*. Hence E' — B = E' — B* =
E' — (E — B*) = (B — {z,y}) U {a} where
B = FE — B* and so x,y € B. By Proposition
5(i) again, (B — {z,y}) U {a} is a basis of M,,,.
We conclude that B is a basis of (M, )*.

Conversely, let (B,)* be a basis of (Mg,)*.
Then E' — (Bgy)* = Byy is a basis of M,,,.. By
using Proposition 5(i), one of the following two
cases occurs.

(1) Byy = (B—{x}) where B is a basis of M,
andz € Bandy ¢ B,or B, = (B—{y})
where B is a basis of M, and z ¢ B and
y € B. Therefore (Byy)* = E' — B,y =
E'— (B—{z}) = (B" — {y}) U {a} or
(Buy) = B' = Boy = E' — (B— {y}) =
(B* — {z}) U{a} where B* = E — B. In
the first case, z ¢ B* and y € B*, and in
the second case, z € B* and y ¢ B*.

(2) By = (B — {z,y}) U {a} where B is
a basis of M, and z,y € B. Therefore
(Bry)™ = E' =By = E'—[(B—{x, y})U
{a}] = B* where B* = E — B and
x,y ¢ B*.

By (1) and (2), we conclude that every basis of
(Myy)* satisfies (i).

(i) Suppose thatx ~ yin M, and B} € (B])*. Then
By = (B* — {x,y}) U {«a} where B* € B* and
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xz,y € B*. Hence E' — Bf = E' — [(B* —
{z,y}) U{a}] = F — B* = B where Bis a
basis of M and so z,y ¢ B. By Proposition
5(ii), B is a basis of M,,,. Therefore By is a basis
of (Myzy)*. Now suppose B € (B})*. Then
B; = (B* — {z}) where B* € B* and x € B*,
y ¢ B* and (B* — {z}) U{y} ¢ B*. Clearly, if
(B* —{z})U{y} ¢ B*, then (B—{y})U{z} ¢
B.Hence E' — By = E' — (B* — {z}) = E' —
[(E—B)—{z}] = (B—{y})U{a} where Bisa
basis of M and so x ¢ B,y € B. By Proposition
5(ii) again, (B — {y}) U {a} is a basis of Mg,,.
Thus B3 is a basis of (M,,)*. Similarly, one can
show that when B3 € (B%)*, Bj is a basis of
(May)*

Conversely, let (Bg,)* be a basis of (My,)*.
Then E' — (Byy)* = Bay is a basis of My,,.
By using Proposition 5(ii), one of the following
three cases occurs.

(@) By = B where B € Band z,y ¢ B.
Therefore (B,y)* = E' — B=FE' — (E —
B*) = (B*—{x,y})U{a} where B* € B*
and so x,y € B*.

(b) Byy = (B —{z})U{a} where B is a basis
of M,andz € B,y ¢ Band (B — {z}) U
{y} ¢ B. Therefore (B,,)* = E' — [(B —
{oh) Ufa}] = (B — {y}) where B* =
E—Bandz ¢ B*, y € B*, and (B* —
{uhufe} ¢ B

(¢) Byy = (B—{y})U{a} where B is a basis
of M,andx ¢ B,y € Band (B — {y})U
{z} ¢ B. Therefore (B,,)* = E' — [(B —
{yh) U{a}] = (B — {o}) where B* —
E —-Bandz € B*, y ¢ B*, and (B* —
{z}) U{y} ¢ B"

By (a), (b) and (c), we conclude that every basis of
(Myy)* satisfies (ii) and this completes the proof of
the theorem. ]

As an immediate consequence of Theorem 6, we

have the following result.

Corollary 7. Let M be a binary matroid and x,y €
E(M).Then

(i) if x ~ yin M, then r*(My,) = r*(M) =

[E(M)] —r(M).

(ii) if x o~ yin M, then r*(Myy) = r*(M) — 1 =

[E(M)| —r(M) —1.
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3 When the dual of split-off matroid
is equal with the split-off of dual of
original matroid?

Let M be a binary matroid, by Theorem 6, we can de-
termine all basis of (M, )* in terms of the cobases of
M and, by Proposition 5, we can determine all bases
of the M, in terms of the cobases of M. The next
theorem is the main result of this paper.

Theorem 8. Let M be a binary matroid on a set E.
Let x,y € E such that o« ¢ E. Then (My,)* =
(M*)yy if and only if M = N & N’ where N is an
arbitrarily binary matroid and N' is Up,2 or Ua 2

Proof. Suppose that M be a rank-k binary matroid on
aset E with |E(M)| = n. Then r(M*) =n — k and
|E(Myy)| =n—1. Letz,y € Esuchthata ¢ E
and let B* be the collection of cobases of M. Then
by Proposition 5, the collection of bases of (A *),, is
one of the following cases:

(@) If x ~ y in M*, then B, = By U By where
B = {B*—{x} . B* € B, z € B*
andygéB*}:{B*—{y}:B*eB*,a:géB*
andyeB*};

By = {(B ~ {z.y}) U {a}
B* and:c,yeB*}.

B* ¢

(b) If x » yin M*, then B}, = B} U B, U B3 where
B, = {B*:BeB* andx,y¢B*};
By = {(B* (e ufal: B e Bz e
By ¢ B and (B - {z}) U{y} ¢ B*};
By = {(B*—{yhu{a}: B* € B, z ¢
B*, y € B*and (B* — {y}) U {z} ¢ 3*}.

Moreover, By Theorem 6, the collection of bases of
(Mgy)* is (B1)* U (Bg)* when x ~ y in M or it is
(B})* U (BY)* U (B5)* when x » y in M.

Now suppose that x ~ y in M and M*. Then
by Proposition 5, (M) = k — 1 and r(M,)) =
n — k — 1. But, by Corollary 7, 7((Mgy,)*) = n —
k. We conclude that in this case (AM*),, is not equal
or isomorphic to (Myy)*. Similarly, if z ~ y in M
and M*. Then by Proposition 5, r(M,.,) = k and
r((M*)zy) = n—k. Butby Corollary 7, r((May)*) =
n —k — 1 and so (M*),, cannot equal or isomorphic
to (Mg,)*. Suppose that  ~ y in one of M and
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M*. Then, By (a), (b) and Theorem 6, there are two
following cases to have a same collection of bases for
(M*)zy and (Myy)*.

() By = (B'2)* = (B'3)* = 0.

This means ¢ ~ y in M* and © ~ y in M.
Therefore, the collections of bases of two ma-
troids (M*)gy and (Myy)* is {(B* — {z,y} U
{a} : B* € B*,z,y € B*}. We conclude that
every basis of M* contains both x and y and so x
and y are loops of M and coloops of M *. Hence,
M=N®o®& U072 and M* = N* U272 where N
is an arbitrary binary matroid.

(i) (B))*=By=D83=0.

This means © ~ gy in M and x ~ y in M*.
Therefore, the collection of bases of two ma-
troids (M*)gy and (Myy)* is {(B* : B* €
B*,z,y ¢ B*}. We conclude that every basis
of M* does not contain both x and y and so x
and y are loops of M* and coloops of M. Hence,
M = N @ Uz and M* = N* @ Up 2 where N
is an arbitrary binary matroid.

Conversely, suppose that x and y are loops of M.
Then M = N @ Uy where NN is a binary matroid.
Thus

o First by applying the split-off operation on two
elements of Uy 2, we have M,, = N @ Up1 and
then by duality, (My,)* = N* @ Uy 1.

e First by duality, M* = N* @ Us 2 and then by
applying the split-off operation on two elements
of Uz 2, we have (M*),y = N* @ Uy 1.

Similarly, if x and y are coloops of M. Then
M = N®Us; 2 where N is a binary matroid and z, y ¢
E(N). Therefore (M*)zy = (Myy)* = N* @ Upa
and this completes the proof of the theorem. O
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