On dual of the split-off matroids

VAHID GHORBANI, GHODRATOLLAH AZADI, HABIB AZANCHILER
Urmia University
Department of Mathematics
Urmia
IRAN
\{v.ghorbani, gh.azadi, h.azanchiler\}@urmia.ac.ir

Abstract

Azadi et al. [Generalization of Splitting off Operation to Binary Matroids, Electronic Notes in Discrete Math, 15 (2003), 186-188] have generalized the splitting off (or in short split-off) operation on graphs to binary matroids. The dual of a split-off matroid is not always equal to the split-off of dual of the original matroid. In this paper, for a given matroid M and two elements x and y from $E(M)$, we first characterize the cobases of the split-off matroid $M_{x y}$ in terms of the cobases of the matroid M. Then, by using the set of cobases of $M_{x y}$ and the set of bases (Azadi characterized this set) of $\left(M^{*}\right)_{x y}$, we characterize those binary matroids for which $\left(M_{x y}\right)^{*}=\left(M^{*}\right)_{x y}$. Indeed, for a binary matroid M on a set E with $x, y \in E$, we prove that $\left(M_{x y}\right)^{*}=\left(M^{*}\right)_{x y}$ if and only if $M=N \oplus N^{\prime}$ where N is an arbitrary binary matroid and N^{\prime} is $U_{0,2}$ or $U_{2,2}$ such that $x, y \in E\left(N^{\prime}\right)$.

Key-Words: Binary matroid, Uniform matroid, Direct sum, Split-off operation

1 Introduction

The matroid notation and terminology used here will follow Oxley [5]. A matroid M is a pair (E, \mathcal{I}) consisting of a finite set E and a collection \mathcal{I} of subsets E having the following properties:
(I1) $\emptyset \in \mathcal{I}$.
(I2) If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$.
(I3) If I_{1} and I_{2} are two members of \mathcal{I} and $\left|I_{1}\right|<$ $\left|I_{2}\right|$, then there is an element e of $I_{2}-I_{1}$ such that $I_{1} \cup\{e\} \in \mathcal{I}$.

The collection \mathcal{I} forms the independent sets of M, and the set E is called the ground set of M. We shall often write $\mathcal{I}(M)$ for \mathcal{I} and $E(M)$ for E, particularly when several matroids are being considered. A maximal independent set in M is called a basis or a base of M. If $\mathcal{B}($ or $\mathcal{B}(M))$ be the collection of all bases of M, the matroid M can be defined in terms of its bases and is denoted by the pair (E, \mathcal{B}). The collection \mathcal{B} has the following properties:
(B1) \mathcal{B} is non-empty.
(B2) If B_{1} and B_{2} are in \mathcal{B} and $x \in B_{1}-B_{2}$, then there is an element y of $B_{2}-B_{1}$ such that $\left(B_{1}-\right.$ $\{x\}) \cup\{y\} \in \mathcal{B}$.

An alternate version of (B2) says that if B_{1} and B_{2} are bases of a matroid M, then $\left|B_{1}\right|=\left|B_{2}\right|$. For a
given matroid M with a basis B, the rank of M is the cardinality of B and is denoted by $r(M)$. Let M be a matroid on the ground set E and $\mathcal{B}^{*}(M)$ be $\{E(M)-$ $B: B \in \mathcal{B}(M)\}$. Then $\mathcal{B}^{*}(M)$ is the set of bases of a matroid on $E(M)$. The matroid, whose ground set is $E(M)$ and whose set of bases is $\mathcal{B}^{*}(M)$, is called the dual of M and is denoted by M^{*}. The bases of M^{*} are called cobases of M and the rank of M^{*} is called the corank of M and is denoted by $r^{*}(M)$. Clearly, $r^{*}(M)=|E(M)|-r(M)$.

Let \mathbb{F} be a field and let $E \subseteq \mathbb{F}^{k}$ be a finite set of vectors. Then a linear matroid is a matroid whose bases are the maximal linearly independent sets of vectors in E over \mathbb{F}. A binary matroid is a linear matroid over the finite field $G F(2)$. The matroid just obtained from the matrix A is called the vector matroid of A.

Two matroids $M_{1}=\left(E_{1}, \mathcal{B}_{1}\right)$ and $M_{2}=$ $\left(E_{2}, \mathcal{B}_{2}\right)$ are isomorphic if there exists bijection ϕ : $2^{\left(E_{1}\right)} \longrightarrow 2^{\left(E_{2}\right)}$ such that $X \in \mathcal{B}_{1}$ if and only if $\phi(X) \in \mathcal{B}_{2}$. If M and M^{\prime} are two isomorphic matroids, then $r(M)=r\left(M^{\prime}\right)$ and $r^{*}(M)=r^{*}\left(M^{\prime}\right)$.

The definitions of two important classes of matroids and duals of them, which will be used in this paper are formally described as follows.

Definition 1. Let m and n be non-negative integers with $m \leq n$. Let E be an n-element set and \mathcal{B} be the collection of m-element subsets of E. Then this matroid called the uniform matroid on n-element set and denoted by $U_{m, n}$.

Clearly, the dual of $U_{m, n}$ is $U_{n-m, n}$.
Definition 2. Let M_{1} and M_{2} be matroids on disjoint sets E_{1} and E_{2}. Let $E=E_{1} \cup E_{2}$ and
$\mathcal{B}=\left\{B_{1} \cup B_{2}: B_{1} \in \mathcal{B}\left(M_{1}\right) \quad\right.$ and $\left.\quad B_{2} \in \mathcal{B}\left(M_{2}\right)\right\}$.
Then (E, \mathcal{B}) is a matroid and called the direct sum of M_{1} and M_{2} and is denoted by $M_{1} \oplus M_{2}$.

Clearly, if $M=M_{1} \oplus M_{2}$, then $M^{*}=M_{1}^{*} \oplus M_{2}^{*}$.
Splitting off operation for graphs was introduced by Lovasz [4] as follows. Let G be a graph and $x=v v_{1}, y=v v_{2}$ be two adjacent non-loop edges in G. Let $G_{x y}$ be the graph obtained from G by adding the edge $v_{1} v_{2}$ and deleting the edges x and y. The transition from G to $G_{x y}$ is called a splitting off (or in short split-off) operation. The split-off operation has important applications in graph theory [3], [4]. Applying this operation is a well-known and useful method for solving problems in graph connectivity and it may decrease the edge connectivity of the graph.

Shikare, Azadi and Waphare [6],[7] extended the notion of the split-off operation from graphs to binary matroids as follows.

Definition 3. Let M be a binary matroid on a set E and let $x, y \in E$. Let A be a matrix that represents M over $G F(2)$ and $A_{x y}$ be the matrix obtained from A by adjoining an extra column, with label α, which is the sum of the columns corresponding to x and y, and then deleting the two columns corresponding to x and y. Let $M_{x y}$ be the vector matroid of the matrix $A_{x y}$. The transition from M to $M_{x y}$ is called a splitoff operation and the matroid $M_{x y}$ is referred to the split-off matroid.

Definition 4. Two non-loop (a loop is a minimal singleton set which is not independent) elements x and y from binary matroid M are called equivalent, if every basis of M contains at least one of x and y. Note that two coloops of M (loops of M^{*}) are equivalent.

For a given binary matroid M and two elements x and y from $E(M)$, we denote by $x \sim y$ the two equivalent elements x and y and, otherwise, we denote by $x \nsim y$. The next proposition provides a useful characterization of bases of $M_{x y}$ in terms of the bases of M.

Proposition 5. ([6]) Let M be a binary matroid on a set E and $x, y \in E$ such that $\alpha \notin E$. Let \mathcal{B} and $\mathcal{B}_{x y}$ be the set of bases of M and $M_{x y}$, respectively. Then
(i) If $x \sim y$, then $\mathcal{B}_{x y}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ where

- $\mathcal{B}_{1}=\{B-\{x\}: B \in \mathcal{B}, x \in B$ and $y \notin B\}=$ $\{B-\{y\}: B \in \mathcal{B}, x \notin B$ and $y \in B\}$;
- $\mathcal{B}_{2}=\{(B-\{x, y\}) \cup\{\alpha\}: B \in \mathcal{B}$ and $x, y \in$ $B\}$.
(ii) If $x \nsim y$, then $\mathcal{B}_{x y}=\mathcal{B}_{1}^{\prime} \cup \mathcal{B}_{2}^{\prime} \cup \mathcal{B}_{3}^{\prime}$ where

$$
\begin{aligned}
& -\mathcal{B}_{1}^{\prime}=\{B: B \in \mathcal{B} \text { and } x, y \notin B\} ; \\
& -\mathcal{B}_{2}^{\prime}=\{(B-\{x\}) \cup\{\alpha\}: B \in \mathcal{B}, x \in B, y \notin B \\
& \quad \text { and }(B-\{x\}) \cup\{y\} \notin \mathcal{B}\} \\
& -\mathcal{B}_{3}^{\prime}=\{(B-\{y\}) \cup\{\alpha\}: B \in \mathcal{B}, x \notin B, y \in \\
& \quad B \text { and }(B-\{y\}) \cup\{x\} \notin \mathcal{B}\} .
\end{aligned}
$$

By the last proposition, we deduce that if $x \sim y$ in M, then $r\left(M_{x y}\right)=r(M)-1$, otherwise $r\left(M_{x y}\right)=$ $r(M)$.

2 Cobases of the split-off matroid

In this section, we characterize the cobases of the split-off matroid $M_{x y}$ in terms of the cobases of M . We denote by $\left(\mathcal{B}_{x y}\right)^{*}$ the set of cobases of the splitoff matroid $M_{x y}$.

Theorem 6. Let $M=(E, \mathcal{B})$ be a binary matroid with collection of bases \mathcal{B} and $M^{*}=\left(E, \mathcal{B}^{*}\right)$ be the dual of M with collection of bases \mathcal{B}^{*}. Let $x, y \in E$ such that $\alpha \notin E$, and let $\mathcal{B}_{x y}$ and $\left(\mathcal{B}_{x y}\right)^{*}$ be the collections of bases of $M_{x y}$ and $\left(M_{x y}\right)^{*}$, respectively. Then
(i) If $x \sim y$ in M, then $\left(\mathcal{B}_{x y}\right)^{*}=\left(\mathcal{B}_{1}\right)^{*} \cup\left(\mathcal{B}_{2}\right)^{*}$ where

$$
\begin{aligned}
& -\left(\mathcal{B}_{1}\right)^{*}=\left\{\left(B^{*}-\{x\}\right) \cup\{\alpha\}: B^{*} \in \mathcal{B}^{*}, x \in\right. \\
& \left.B^{*} \text { and } y \notin B^{*}\right\}=\left\{\left(B^{*}-\{y\}\right) \cup\{\alpha\}: B^{*} \in\right. \\
& \left.\quad \mathcal{B}^{*}, x \notin B^{*} \text { and } y \in B^{*}\right\} \\
& -\left(\mathcal{B}_{2}\right)^{*}=\left\{B^{*}: B^{*} \in \mathcal{B}^{*} \text { and } x, y \notin B^{*}\right\} .
\end{aligned}
$$

(ii) If $x \nsim y$ in M, then $\left(\mathcal{B}_{x y}\right)^{*}=\left(\mathcal{B}^{\prime}{ }_{1}\right)^{*} \cup\left(\mathcal{B}^{\prime}{ }_{2}\right)^{*} \cup$ $\left(\mathcal{B}^{\prime}{ }_{3}\right)^{*}$ where
$-\left(\mathcal{B}^{\prime}{ }_{1}\right)^{*}=\left\{\left(B^{*}-\{x, y\}\right) \cup\{\alpha\}: B^{*} \in\right.$ \mathcal{B}^{*} and $\left.x, y \in B^{*}\right\} ;$

$$
\begin{aligned}
- & \left(\mathcal{B}^{\prime}\right)^{*}=\left\{\left(B^{*}-\{x\}\right): B^{*} \in \mathcal{B}^{*}, x \in B^{*}, y \notin\right. \\
& \left.B^{*} \text { and }\left(B^{*}-\{x\}\right) \cup\{y\} \notin \mathcal{B}^{*}\right\} \\
- & \left(\mathcal{B}^{\prime}{ }_{3}\right)^{*}=\left\{\left(B^{*}-\{y\}\right): B^{*} \in \mathcal{B}^{*}, x \notin B^{*}, y \in\right. \\
& \left.B^{*} \text { and }\left(B^{*}-\{y\}\right) \cup\{x\} \notin \mathcal{B}^{*}\right\} .
\end{aligned}
$$

Proof. Suppose that E^{\prime} be the ground set of $M_{x y}$. Clearly, $E-E^{\prime}=\{x, y\}$ and $E^{\prime}-E=\{\alpha\}$. To prove (i) and (ii), we shall show that every member of $\left(\mathcal{B}_{x y}\right)^{*}$ is a basis of $\left(M_{x y}\right)^{*}$ and every basis of $\left(M_{x y}\right)^{*}$ is a member of $\left(\mathcal{B}_{x y}\right)^{*}$.
(i) Suppose that $x \sim y$ in M, and $B_{1}^{*} \in\left(\mathcal{B}_{1}\right)^{*}$. Then $B_{1}^{*}=\left(B^{*}-\{x\}\right) \cup\{\alpha\}$ where $B^{*} \in \mathcal{B}^{*}, x \in B^{*}$ and $y \notin B^{*}$, or $B_{1}^{*}=\left(B^{*}-\{y\}\right) \cup\{\alpha\}$ where $B^{*} \in \mathcal{B}^{*}, x \notin B^{*}$ and $y \in B^{*}$. In the first case, $E^{\prime}-B_{1}^{*}=E^{\prime}-\left[\left(B^{*}-\{x\}\right) \cup\{\alpha\}\right]=$ $(B-\{y\})$ where $B=E-B^{*}$ and so $x \notin B, y \in$ B. By Proposition 5(i), $(B-\{y\})$ is a basis of $M_{x y}$. We conclude that B_{1}^{*} is a basis of $\left(M_{x y}\right)^{*}$. Similarly, in the second case, B_{1}^{*} is a basis of $\left(M_{x y}\right)^{*}$. Now suppose $B_{2}^{*} \in\left(\mathcal{B}_{2}\right)^{*}$. Then $B_{2}^{*}=$ B^{*} and $x, y \notin B^{*}$. Hence $E^{\prime}-B_{2}^{*}=E^{\prime}-B^{*}=$ $E^{\prime}-\left(E-B^{*}\right)=(B-\{x, y\}) \cup\{\alpha\}$ where $B=E-B^{*}$ and so $x, y \in B$. By Proposition 5(i) again, $(B-\{x, y\}) \cup\{\alpha\}$ is a basis of $M_{x y}$. We conclude that B_{2}^{*} is a basis of $\left(M_{x y}\right)^{*}$.
Conversely, let $\left(B_{x y}\right)^{*}$ be a basis of $\left(M_{x y}\right)^{*}$. Then $E^{\prime}-\left(B_{x y}\right)^{*}=B_{x y}$ is a basis of $M_{x y}$. By using Proposition 5(i), one of the following two cases occurs.
(1) $B_{x y}=(B-\{x\})$ where B is a basis of M, and $x \in B$ and $y \notin B$, or $B_{x y}=(B-\{y\})$ where B is a basis of M, and $x \notin B$ and $y \in B$. Therefore $\left(B_{x y}\right)^{*}=E^{\prime}-B_{x y}=$ $E^{\prime}-(B-\{x\})=\left(B^{*}-\{y\}\right) \cup\{\alpha\}$ or $\left(B_{x y}\right)^{*}=E^{\prime}-B_{x y}=E^{\prime}-(B-\{y\})=$ $\left(B^{*}-\{x\}\right) \cup\{\alpha\}$ where $B^{*}=E-B$. In the first case, $x \notin B^{*}$ and $y \in B^{*}$, and in the second case, $x \in B^{*}$ and $y \notin B^{*}$.
(2) $B_{x y}=(B-\{x, y\}) \cup\{\alpha\}$ where B is a basis of M, and $x, y \in B$. Therefore $\left(B_{x y}\right)^{*}=E^{\prime}-B_{x y}=E^{\prime}-[(B-\{x, y\}) \cup$ $\{\alpha\}]=B^{*}$ where $B^{*}=E-B$ and $x, y \notin B^{*}$.

By (1) and (2), we conclude that every basis of $\left(M_{x y}\right)^{*}$ satisfies (i).
(ii) Suppose that $x \nsim y$ in M, and $B_{1}^{*} \in\left(\mathcal{B}_{1}^{\prime}\right)^{*}$. Then $B_{1}^{*}=\left(B^{*}-\{x, y\}\right) \cup\{\alpha\}$ where $B^{*} \in \mathcal{B}^{*}$ and
$x, y \in B^{*}$. Hence $E^{\prime}-B_{1}^{*}=E^{\prime}-\left[\left(B^{*}-\right.\right.$ $\{x, y\}) \cup\{\alpha\}]=E-B^{*}=B$ where B is a basis of M and so $x, y \notin B$. By Proposition 5(ii), B is a basis of $M_{x y}$. Therefore B_{1}^{*} is a basis of $\left(M_{x y}\right)^{*}$. Now suppose $B_{2}^{*} \in\left(\mathcal{B}_{2}^{\prime}\right)^{*}$. Then $B_{2}^{*}=\left(B^{*}-\{x\}\right)$ where $B^{*} \in \mathcal{B}^{*}$ and $x \in B^{*}$, $y \notin B^{*}$ and $\left(B^{*}-\{x\}\right) \cup\{y\} \notin \mathcal{B}^{*}$. Clearly, if $\left(B^{*}-\{x\}\right) \cup\{y\} \notin \mathcal{B}^{*}$, then $(B-\{y\}) \cup\{x\} \notin$ \mathcal{B}. Hence $E^{\prime}-B_{2}^{*}=E^{\prime}-\left(B^{*}-\{x\}\right)=E^{\prime}-$ $[(E-B)-\{x\}]=(B-\{y\}) \cup\{\alpha\}$ where B is a basis of M and so $x \notin B, y \in B$. By Proposition 5(ii) again, $(B-\{y\}) \cup\{\alpha\}$ is a basis of $M_{x y}$. Thus B_{2}^{*} is a basis of $\left(M_{x y}\right)^{*}$. Similarly, one can show that when $B_{3}^{*} \in\left(\mathcal{B}_{3}^{\prime}\right)^{*}, B_{3}^{*}$ is a basis of $\left(M_{x y}\right)^{*}$.
Conversely, let $\left(B_{x y}\right)^{*}$ be a basis of $\left(M_{x y}\right)^{*}$. Then $E^{\prime}-\left(B_{x y}\right)^{*}=B_{x y}$ is a basis of $M_{x y}$. By using Proposition 5(ii), one of the following three cases occurs.
(a) $B_{x y}=B$ where $B \in \mathcal{B}$ and $x, y \notin B$. Therefore $\left(B_{x y}\right)^{*}=E^{\prime}-B=E^{\prime}-(E-$ $\left.B^{*}\right)=\left(B^{*}-\{x, y\}\right) \cup\{\alpha\}$ where $B^{*} \in \mathcal{B}^{*}$ and so $x, y \in B^{*}$.
(b) $B_{x y}=(B-\{x\}) \cup\{\alpha\}$ where B is a basis of M, and $x \in B, y \notin B$ and $(B-\{x\}) \cup$ $\{y\} \notin \mathcal{B}$. Therefore $\left(B_{x y}\right)^{*}=E^{\prime}-[(B-$ $\{x\}) \cup\{\alpha\}]=\left(B^{*}-\{y\}\right)$ where $B^{*}=$ $E-B$ and $x \notin B^{*}, y \in B^{*}$, and $\left(B^{*}-\right.$ $\{y\}) \cup\{x\} \notin \mathcal{B}^{*}$.
(c) $B_{x y}=(B-\{y\}) \cup\{\alpha\}$ where B is a basis of M, and $x \notin B, y \in B$ and $(B-\{y\}) \cup$ $\{x\} \notin \mathcal{B}$. Therefore $\left(B_{x y}\right)^{*}=E^{\prime}-[(B-$ $\{y\}) \cup\{\alpha\}]=\left(B^{*}-\{x\}\right)$ where $B^{*}=$ $E-B$ and $x \in B^{*}, y \notin B^{*}$, and $\left(B^{*}-\right.$ $\{x\}) \cup\{y\} \notin \mathcal{B}^{*}$.

By (a), (b) and (c), we conclude that every basis of $\left(M_{x y}\right)^{*}$ satisfies (ii) and this completes the proof of the theorem.

As an immediate consequence of Theorem 6, we have the following result.

Corollary 7. Let M be a binary matroid and $x, y \in$ $E(M)$.Then
(i) if $x \sim y$ in M, then $r^{*}\left(M_{x y}\right)=r^{*}(M)=$ $|E(M)|-r(M)$.
(ii) if $x \nsim y$ in M, then $r^{*}\left(M_{x y}\right)=r^{*}(M)-1=$ $|E(M)|-r(M)-1$.

3 When the dual of split-off matroid is equal with the split-off of dual of original matroid?

Let M be a binary matroid, by Theorem 6 , we can determine all basis of $\left(M_{x y}\right)^{*}$ in terms of the cobases of M and, by Proposition 5, we can determine all bases of the $M_{x y}^{*}$ in terms of the cobases of M. The next theorem is the main result of this paper.

Theorem 8. Let M be a binary matroid on a set E. Let $x, y \in E$ such that $\alpha \notin E$. Then $\left(M_{x y}\right)^{*}=$ $\left(M^{*}\right)_{x y}$ if and only if $M=N \oplus N^{\prime}$ where N is an arbitrarily binary matroid and N^{\prime} is $U_{0,2}$ or $U_{2,2}$

Proof. Suppose that M be a rank-k binary matroid on a set E with $|E(M)|=n$. Then $r\left(M^{*}\right)=n-k$ and $\left|E\left(M_{x y}\right)\right|=n-1$. Let $x, y \in E$ such that $\alpha \notin E$ and let \mathcal{B}^{*} be the collection of cobases of M. Then by Proposition 5, the collection of bases of $\left(M^{*}\right)_{x y}$ is one of the following cases:
(a) If $x \sim y$ in M^{*}, then $\mathcal{B}_{x y}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ where

$$
\begin{aligned}
& -\mathcal{B}_{1}=\left\{B^{*}-\{x\}: B^{*} \in \mathcal{B}^{*}, x \in B^{*}\right. \\
& \text { and } \left.y \notin B^{*}\right\}=\left\{B^{*}-\{y\}: B^{*} \in \mathcal{B}^{*}, x \notin B^{*}\right. \\
& \text { and } \left.y \in B^{*}\right\} ; \\
& -\mathcal{B}_{2}=\left\{\left(B^{*}-\{x, y\}\right) \cup\{\alpha\}: B^{*} \in\right. \\
& \left.\mathcal{B}^{*} \text { and } x, y \in B^{*}\right\} .
\end{aligned}
$$

(b) If $x \nsim y$ in M^{*}, then $\mathcal{B}_{x y}^{*}=\mathcal{B}_{1}^{\prime} \cup \mathcal{B}_{2}^{\prime} \cup \mathcal{B}_{3}^{\prime}$ where

$$
\begin{aligned}
& -\mathcal{B}_{1}^{\prime}=\left\{B^{*}: B \in \mathcal{B}^{*} \text { and } x, y \notin B^{*}\right\} ; \\
& -\mathcal{B}_{2}^{\prime}=\left\{\left(B^{*}-\{x\}\right) \cup\{\alpha\}: B^{*} \in \mathcal{B}^{*}, x \in\right. \\
& \left.B^{*} y \notin B^{*} \text { and }\left(B^{*}-\{x\}\right) \cup\{y\} \notin \mathcal{B}^{*}\right\} ; \\
& -\mathcal{B}_{3}^{\prime}=\left\{\left(B^{*}-\{y\}\right) \cup\{\alpha\}: B^{*} \in \mathcal{B}^{*}, x \notin\right. \\
& \left.B^{*}, y \in B^{*} \text { and }\left(B^{*}-\{y\}\right) \cup\{x\} \notin \mathcal{B}^{*}\right\} .
\end{aligned}
$$

Moreover, By Theorem 6, the collection of bases of $\left(M_{x y}\right)^{*}$ is $\left(B_{1}\right)^{*} \cup\left(B_{2}\right)^{*}$ when $x \sim y$ in M or it is $\left(B_{1}^{\prime}\right)^{*} \cup\left(B_{2}^{\prime}\right)^{*} \cup\left(B_{3}^{\prime}\right)^{*}$ when $x \nsim y$ in M.

Now suppose that $x \sim y$ in M and M^{*}. Then by Proposition 5, $r\left(M_{x y}\right)=k-1$ and $r\left(M_{x y}^{*}\right)=$ $n-k-1$. But, by Corollary 7, $r\left(\left(M_{x y}\right)^{*}\right)=n-$ k. We conclude that in this case $\left(M^{*}\right)_{x y}$ is not equal or isomorphic to $\left(M_{x y}\right)^{*}$. Similarly, if $x \nsim y$ in M and M^{*}. Then by Proposition 5, $r\left(M_{x y}\right)=k$ and $r\left(\left(M^{*}\right)_{x y}\right)=n-k$. But by Corollary $7, r\left(\left(M_{x y}\right)^{*}\right)=$ $n-k-1$ and so $\left(M^{*}\right)_{x y}$ cannot equal or isomorphic to $\left(M_{x y}\right)^{*}$. Suppose that $x \sim y$ in one of M and
M^{*}. Then, By (a), (b) and Theorem 6, there are two following cases to have a same collection of bases for $\left(M^{*}\right)_{x y}$ and $\left(M_{x y}\right)^{*}$.
(i) $\mathcal{B}_{1}=\left(\mathcal{B}^{\prime}{ }_{2}\right)^{*}=\left(\mathcal{B}^{\prime}{ }_{3}\right)^{*}=\emptyset$.

This means $x \sim y$ in M^{*} and $x \nsim y$ in M. Therefore, the collections of bases of two matroids $\left(M^{*}\right)_{x y}$ and $\left(M_{x y}\right)^{*}$ is $\left\{\left(B^{*}-\{x, y\} \cup\right.\right.$ $\left.\{\alpha\}: B^{*} \in \mathcal{B}^{*}, x, y \in B^{*}\right\}$. We conclude that every basis of M^{*} contains both x and y and so x and y are loops of M and coloops of M^{*}. Hence, $M=N \oplus U_{0,2}$ and $M^{*}=N^{*} \oplus U_{2,2}$ where N is an arbitrary binary matroid.
(ii) $\left(\mathcal{B}_{1}^{\prime}\right)^{*}=\mathcal{B}^{\prime}{ }_{2}=\mathcal{B}^{\prime}{ }_{3}=\emptyset$.

This means $x \sim y$ in M and $x \nsim y$ in M^{*}. Therefore, the collection of bases of two matroids $\left(M^{*}\right)_{x y}$ and $\left(M_{x y}\right)^{*}$ is $\left\{\left(B^{*}: B^{*} \in\right.\right.$ $\left.\mathcal{B}^{*}, x, y \notin B^{*}\right\}$. We conclude that every basis of M^{*} does not contain both x and y and so x and y are loops of M^{*} and coloops of M. Hence, $M=N \oplus U_{2,2}$ and $M^{*}=N^{*} \oplus U_{0,2}$ where N is an arbitrary binary matroid.

Conversely, suppose that x and y are loops of M. Then $M=N \oplus U_{0,2}$ where N is a binary matroid. Thus

- First by applying the split-off operation on two elements of $U_{0,2}$, we have $M_{x y}=N \oplus U_{0,1}$ and then by duality, $\left(M_{x y}\right)^{*}=N^{*} \oplus U_{1,1}$.
- First by duality, $M^{*}=N^{*} \oplus U_{2,2}$ and then by applying the split-off operation on two elements of $U_{2,2}$, we have $\left(M^{*}\right)_{x y}=N^{*} \oplus U_{1,1}$.

Similarly, if x and y are coloops of M. Then $M=N \oplus U_{2,2}$ where N is a binary matroid and $x, y \notin$ $E(N)$. Therefore $\left(M^{*}\right)_{x y}=\left(M_{x y}\right)^{*}=N^{*} \oplus U_{0,1}$ and this completes the proof of the theorem.

Acknowledgements

Some results of this article are presented in two following conferences: Caucasian Mathematics Conference (CMC-II) at Van, Turkey, August 22-24, 2017 [1] and Graph Theory and Algebraic Combinatorics Conference at Amirkabir University of Technology, Tehran, Iran Volume:9 [2].

REFERENCES

[1] V. Ghorbani A note on the dual of the splitoff, Caucasian mathematics conference (CMCII), Van, Turkey, 2017.
[2] V. Ghorbani, Gh. Azadi and H. Azanchiler, The Cobases of the split-off binary matroids, Graph theory and algebraic combinatorics conference, Tehran, Iran, 9, 2017.
[3] T. Jordan, Constrained Edge-Splitting Problems, Springer Lecture Notes in Computer Science, 1610, 1999, pp. 273-288.
[4] L. Lovasz, Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979.
[5] J. Oxley, Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, second edition, 2011.
[6] M.M. Shikare, Gh. Azadi and B.N. Waphare, Generalization of Splitting off Operation to Binary Matroids, Electronic Notes in Discrete Mathematics, 15, 2003, pp. 186-188.
[7] M.M. Shikare, K.V. Dalvi, Splitting off operation for binary matroids and its applications, Graph and Combinatorics, 27, 2011, pp. 871882.

