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Abstract: Azadi et al. [Generalization of Splitting off Operation to Binary Matroids, Electronic Notes in Discrete
Math, 15 (2003), 186–188] have generalized the splitting off (or in short split-off) operation on graphs to binary
matroids. The dual of a split-off matroid is not always equal to the split-off of dual of the original matroid. In
this paper, for a given matroid M and two elements x and y from E(M), we first characterize the cobases of
the split-off matroid Mxy in terms of the cobases of the matroid M . Then, by using the set of cobases of Mxy

and the set of bases (Azadi characterized this set) of (M∗)xy, we characterize those binary matroids for which
(Mxy)

∗ = (M∗)xy. Indeed, for a binary matroid M on a set E with x, y ∈ E, we prove that (Mxy)
∗ = (M∗)xy if

and only if M = N ⊕N ′ where N is an arbitrary binary matroid and N ′ is U0,2 or U2,2 such that x, y ∈ E(N ′).
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1 Introduction
The matroid notation and terminology used here will
follow Oxley [5]. A matroid M is a pair (E, I) con-
sisting of a finite set E and a collection I of subsets
E having the following properties:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I , then I ′ ∈ I.

(I3) If I1 and I2 are two members of I and |I1| <
|I2|, then there is an element e of I2 − I1 such
that I1 ∪ {e} ∈ I .

The collection I forms the independent sets of M , and
the set E is called the ground set of M . We shall often
write I(M) for I and E(M) for E, particularly when
several matroids are being considered. A maximal in-
dependent set in M is called a basis or a base of M .
If B (or B(M)) be the collection of all bases of M , the
matroid M can be defined in terms of its bases and is
denoted by the pair (E,B). The collection B has the
following properties:

(B1) B is non-empty.

(B2) If B1 and B2 are in B and x ∈ B1 − B2, then
there is an element y of B2−B1 such that (B1−
{x}) ∪ {y} ∈ B.

An alternate version of (B2) says that if B1 and B2

are bases of a matroid M , then |B1| = |B2|. For a

given matroid M with a basis B, the rank of M is the
cardinality of B and is denoted by r(M). Let M be a
matroid on the ground set E and B∗(M) be {E(M)−
B : B ∈ B(M)}. Then B∗(M) is the set of bases of a
matroid on E(M). The matroid, whose ground set is
E(M) and whose set of bases is B∗(M), is called the
dual of M and is denoted by M∗. The bases of M∗

are called cobases of M and the rank of M∗ is called
the corank of M and is denoted by r∗(M). Clearly,
r∗(M) = |E(M)| − r(M).

Let F be a field and let E ⊆ Fk be a finite set of
vectors. Then a linear matroid is a matroid whose
bases are the maximal linearly independent sets of
vectors in E over F. A binary matroid is a linear ma-
troid over the finite field GF (2). The matroid just ob-
tained from the matrix A is called the vector matroid
of A.

Two matroids M1 = (E1,B1) and M2 =
(E2,B2) are isomorphic if there exists bijection ϕ :

2(E1) −→ 2(E2) such that X ∈ B1 if and only if
ϕ(X) ∈ B2. If M and M ′ are two isomorphic ma-
troids, then r(M) = r(M ′) and r∗(M) = r∗(M ′).

The definitions of two important classes of ma-
troids and duals of them, which will be used in this
paper are formally described as follows.

Definition 1. Let m and n be non-negative integers
with m ≤ n. Let E be an n-element set and B be the
collection of m-element subsets of E. Then this ma-
troid called the uniform matroid on n-element set and
denoted by Um,n.
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Clearly, the dual of Um,n is Un−m,n.

Definition 2. Let M1 and M2 be matroids on disjoint
sets E1 and E2. Let E = E1 ∪ E2 and

B = {B1∪B2 : B1 ∈ B(M1) and B2 ∈ B(M2)}.
(1)

Then (E,B) is a matroid and called the direct
sum of M1 and M2 and is denoted by M1 ⊕M2.

Clearly, if M = M1⊕M2, then M∗ = M∗
1 ⊕M∗

2 .

Splitting off operation for graphs was introduced
by Lovasz [4] as follows. Let G be a graph and
x = vv1, y = vv2 be two adjacent non-loop edges in
G. Let Gxy be the graph obtained from G by adding
the edge v1v2 and deleting the edges x and y. The
transition from G to Gxy is called a splitting off (or in
short split-off ) operation. The split-off operation has
important applications in graph theory [3], [4]. Apply-
ing this operation is a well-known and useful method
for solving problems in graph connectivity and it may
decrease the edge connectivity of the graph.

Shikare, Azadi and Waphare [6],[7] extended
the notion of the split-off operation from graphs to bi-
nary matroids as follows.

Definition 3. Let M be a binary matroid on a set E
and let x, y ∈ E. Let A be a matrix that represents
M over GF (2) and Axy be the matrix obtained from
A by adjoining an extra column, with label α, which
is the sum of the columns corresponding to x and y,
and then deleting the two columns corresponding to x
and y. Let Mxy be the vector matroid of the matrix
Axy. The transition from M to Mxy is called a split-
off operation and the matroid Mxy is referred to the
split-off matroid.

Definition 4. Two non-loop (a loop is a minimal sin-
gleton set which is not independent) elements x and y
from binary matroid M are called equivalent, if every
basis of M contains at least one of x and y. Note that
two coloops of M (loops of M∗) are equivalent.

For a given binary matroid M and two elements
x and y from E(M), we denote by x ∼ y the two
equivalent elements x and y and, otherwise, we denote
by x ≁ y. The next proposition provides a useful
characterization of bases of Mxy in terms of the bases
of M .

Proposition 5. ([6]) Let M be a binary matroid on a
set E and x, y ∈ E such that α /∈ E. Let B and Bxy

be the set of bases of M and Mxy, respectively. Then

(i) If x ∼ y, then Bxy = B1 ∪ B2 where

- B1 =
{
B−{x} : B ∈ B, x ∈ B and y /∈ B

}
={

B − {y} : B ∈ B, x /∈ B and y ∈ B
}
;

- B2 =
{
(B − {x, y}) ∪ {α} : B ∈ B and x, y ∈

B

}
.

(ii) If x ≁ y, then Bxy = B′
1 ∪ B′

2 ∪ B′
3 where

- B′
1 =

{
B : B ∈ B and x, y /∈ B

}
;

- B′
2 =

{
(B−{x})∪{α} : B ∈ B, x ∈ B, y /∈ B

and (B − {x}) ∪ {y} /∈ B
}

;

- B′
3 =

{
(B − {y}) ∪ {α} : B ∈ B, x /∈ B, y ∈

B and (B − {y}) ∪ {x} /∈ B
}

.

By the last proposition, we deduce that if x ∼ y
in M , then r(Mxy) = r(M)−1, otherwise r(Mxy) =
r(M).

2 Cobases of the split-off matroid

In this section, we characterize the cobases of the
split-off matroid Mxy in terms of the cobases of M.
We denote by (Bxy)

∗ the set of cobases of the split-
off matroid Mxy.

Theorem 6. Let M = (E,B) be a binary matroid
with collection of bases B and M∗ = (E,B∗) be the
dual of M with collection of bases B∗. Let x, y ∈ E
such that α /∈ E, and let Bxy and (Bxy)

∗ be the
collections of bases of Mxy and (Mxy)

∗, respectively.
Then

(i) If x ∼ y in M , then (Bxy)
∗ = (B1)

∗∪ (B2)
∗ where

- (B1)
∗ =

{
(B∗ − {x}) ∪ {α} : B∗ ∈ B∗, x ∈

B∗ and y /∈ B∗
}
=

{
(B∗ − {y}) ∪ {α} : B∗ ∈

B∗, x /∈ B∗ and y ∈ B∗
}

;

- (B2)
∗ =

{
B∗ : B∗ ∈ B∗ and x, y /∈ B∗

}
.

(ii) If x ≁ y in M , then (Bxy)
∗ = (B′

1)
∗ ∪ (B′

2)
∗ ∪

(B′
3)

∗ where

- (B′
1)

∗ =
{
(B∗ − {x, y}) ∪ {α} : B∗ ∈

B∗ and x, y ∈ B∗
}

;
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- (B′
2)

∗ =
{
(B∗−{x}) : B∗ ∈ B∗, x ∈ B∗, y /∈

B∗ and (B∗ − {x}) ∪ {y} /∈ B∗
}

;

- (B′
3)

∗ =
{
(B∗−{y}) : B∗ ∈ B∗, x /∈ B∗, y ∈

B∗ and (B∗ − {y}) ∪ {x} /∈ B∗
}

.

Proof. Suppose that E′ be the ground set of Mxy.
Clearly, E − E′ = {x, y} and E′ − E = {α}. To
prove (i) and (ii), we shall show that every member of
(Bxy)

∗ is a basis of (Mxy)
∗ and every basis of (Mxy)

∗

is a member of (Bxy)
∗.

(i) Suppose that x ∼ y in M , and B∗
1 ∈ (B1)

∗. Then
B∗

1 = (B∗−{x})∪{α} where B∗ ∈ B∗ , x ∈ B∗

and y /∈ B∗, or B∗
1 = (B∗ − {y}) ∪ {α} where

B∗ ∈ B∗ , x /∈ B∗ and y ∈ B∗. In the first
case, E′ − B∗

1 = E′ − [(B∗ − {x}) ∪ {α}] =
(B−{y}) where B = E−B∗ and so x /∈ B, y ∈
B. By Proposition 5(i), (B − {y}) is a basis of
Mxy. We conclude that B∗

1 is a basis of (Mxy)
∗.

Similarly, in the second case, B∗
1 is a basis of

(Mxy)
∗. Now suppose B∗

2 ∈ (B2)
∗. Then B∗

2 =
B∗ and x, y /∈ B∗. Hence E′−B∗

2 = E′−B∗ =
E′ − (E − B∗) = (B − {x, y}) ∪ {α} where
B = E − B∗ and so x, y ∈ B. By Proposition
5(i) again, (B−{x, y})∪{α} is a basis of Mxy.
We conclude that B∗

2 is a basis of (Mxy)
∗.

Conversely, let (Bxy)
∗ be a basis of (Mxy)

∗.
Then E′ − (Bxy)

∗ = Bxy is a basis of Mxy. By
using Proposition 5(i), one of the following two
cases occurs.

(1) Bxy = (B−{x}) where B is a basis of M ,
and x ∈ B and y /∈ B, or Bxy = (B−{y})
where B is a basis of M , and x /∈ B and
y ∈ B. Therefore (Bxy)

∗ = E′ − Bxy =
E′ − (B − {x}) = (B∗ − {y}) ∪ {α} or
(Bxy)

∗ = E′ − Bxy = E′ − (B − {y}) =
(B∗ − {x}) ∪ {α} where B∗ = E −B. In
the first case, x /∈ B∗ and y ∈ B∗, and in
the second case, x ∈ B∗ and y /∈ B∗.

(2) Bxy = (B − {x, y}) ∪ {α} where B is
a basis of M , and x, y ∈ B. Therefore
(Bxy)

∗ = E′−Bxy = E′−[(B−{x, y})∪
{α}] = B∗ where B∗ = E − B and
x, y /∈ B∗.

By (1) and (2), we conclude that every basis of
(Mxy)

∗ satisfies (i).

(ii) Suppose that x ≁ y in M , and B∗
1 ∈ (B′

1)
∗. Then

B∗
1 = (B∗ − {x, y}) ∪ {α} where B∗ ∈ B∗ and

x, y ∈ B∗. Hence E′ − B∗
1 = E′ − [(B∗ −

{x, y}) ∪ {α}] = E − B∗ = B where B is a
basis of M and so x, y /∈ B. By Proposition
5(ii), B is a basis of Mxy. Therefore B∗

1 is a basis
of (Mxy)

∗. Now suppose B∗
2 ∈ (B′

2)
∗. Then

B∗
2 = (B∗ − {x}) where B∗ ∈ B∗ and x ∈ B∗,

y /∈ B∗ and (B∗ − {x}) ∪ {y} /∈ B∗. Clearly, if
(B∗−{x})∪{y} /∈ B∗, then (B−{y})∪{x} /∈
B. Hence E′ −B∗

2 = E′ − (B∗ − {x}) = E′ −
[(E−B)−{x}] = (B−{y})∪{α} where B is a
basis of M and so x /∈ B, y ∈ B. By Proposition
5(ii) again, (B − {y}) ∪ {α} is a basis of Mxy.
Thus B∗

2 is a basis of (Mxy)
∗. Similarly, one can

show that when B∗
3 ∈ (B′

3)
∗, B∗

3 is a basis of
(Mxy)

∗.

Conversely, let (Bxy)
∗ be a basis of (Mxy)

∗.
Then E′ − (Bxy)

∗ = Bxy is a basis of Mxy.
By using Proposition 5(ii), one of the following
three cases occurs.

(a) Bxy = B where B ∈ B and x, y /∈ B.
Therefore (Bxy)

∗ = E′ −B = E′ − (E −
B∗) = (B∗−{x, y})∪{α} where B∗ ∈ B∗

and so x, y ∈ B∗.

(b) Bxy = (B−{x})∪{α} where B is a basis
of M , and x ∈ B, y /∈ B and (B − {x}) ∪
{y} /∈ B. Therefore (Bxy)

∗ = E′ − [(B −
{x}) ∪ {α}] = (B∗ − {y}) where B∗ =
E − B and x /∈ B∗, y ∈ B∗, and (B∗ −
{y}) ∪ {x} /∈ B∗.

(c) Bxy = (B−{y})∪{α} where B is a basis
of M , and x /∈ B, y ∈ B and (B − {y}) ∪
{x} /∈ B. Therefore (Bxy)

∗ = E′ − [(B −
{y}) ∪ {α}] = (B∗ − {x}) where B∗ =
E − B and x ∈ B∗, y /∈ B∗, and (B∗ −
{x}) ∪ {y} /∈ B∗.

By (a), (b) and (c), we conclude that every basis of
(Mxy)

∗ satisfies (ii) and this completes the proof of
the theorem.

As an immediate consequence of Theorem 6, we
have the following result.

Corollary 7. Let M be a binary matroid and x, y ∈
E(M).Then

(i) if x ∼ y in M , then r∗(Mxy) = r∗(M) =
|E(M)| − r(M).

(ii) if x ≁ y in M , then r∗(Mxy) = r∗(M) − 1 =
|E(M)| − r(M)− 1.
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3 When the dual of split-off matroid
is equal with the split-off of dual of
original matroid?

Let M be a binary matroid, by Theorem 6, we can de-
termine all basis of (Mxy)

∗ in terms of the cobases of
M and, by Proposition 5, we can determine all bases
of the M∗

xy in terms of the cobases of M . The next
theorem is the main result of this paper.

Theorem 8. Let M be a binary matroid on a set E.
Let x, y ∈ E such that α /∈ E. Then (Mxy)

∗ =
(M∗)xy if and only if M = N ⊕ N ′ where N is an
arbitrarily binary matroid and N ′ is U0,2 or U2,2

Proof. Suppose that M be a rank-k binary matroid on
a set E with |E(M)| = n. Then r(M∗) = n− k and
|E(Mxy)| = n − 1. Let x, y ∈ E such that α /∈ E
and let B∗ be the collection of cobases of M . Then
by Proposition 5, the collection of bases of (M∗)xy is
one of the following cases:

(a) If x ∼ y in M∗, then B∗
xy = B1 ∪ B2 where

-B1 =
{
B∗ − {x} : B∗ ∈ B∗, x ∈ B∗

and y /∈ B∗
}
=

{
B∗−{y} : B∗ ∈ B∗, x /∈ B∗

and y ∈ B∗
}

;

-B2 =
{
(B∗ − {x, y}) ∪ {α} : B∗ ∈

B∗ and x, y ∈ B∗
}

.

(b) If x ≁ y in M∗, then B∗
xy = B′

1 ∪B′
2 ∪B′

3 where

-B′
1 =

{
B∗ : B ∈ B∗ and x, y /∈ B∗

}
;

-B′
2 =

{
(B∗ − {x}) ∪ {α} : B∗ ∈ B∗, x ∈

B∗ y /∈ B∗ and (B∗ − {x}) ∪ {y} /∈ B∗
}

;

-B′
3 =

{
(B∗ − {y}) ∪ {α} : B∗ ∈ B∗, x /∈

B∗, y ∈ B∗ and (B∗ − {y}) ∪ {x} /∈ B∗
}

.

Moreover, By Theorem 6, the collection of bases of
(Mxy)

∗ is (B1)
∗ ∪ (B2)

∗ when x ∼ y in M or it is
(B′

1)
∗ ∪ (B′

2)
∗ ∪ (B′

3)
∗ when x ≁ y in M .

Now suppose that x ∼ y in M and M∗. Then
by Proposition 5, r(Mxy) = k − 1 and r(M∗

xy) =
n − k − 1. But, by Corollary 7, r((Mxy)

∗) = n −
k. We conclude that in this case (M∗)xy is not equal
or isomorphic to (Mxy)

∗. Similarly, if x ≁ y in M
and M∗. Then by Proposition 5, r(Mxy) = k and
r((M∗)xy) = n−k. But by Corollary 7, r((Mxy)

∗) =
n− k − 1 and so (M∗)xy cannot equal or isomorphic
to (Mxy)

∗. Suppose that x ∼ y in one of M and

M∗. Then, By (a), (b) and Theorem 6, there are two
following cases to have a same collection of bases for
(M∗)xy and (Mxy)

∗.

(i) B1 = (B′
2)

∗ = (B′
3)

∗ = ∅.
This means x ∼ y in M∗ and x ≁ y in M .
Therefore, the collections of bases of two ma-
troids (M∗)xy and (Mxy)

∗ is
{
(B∗ − {x, y} ∪

{α} : B∗ ∈ B∗, x, y ∈ B∗}. We conclude that
every basis of M∗ contains both x and y and so x
and y are loops of M and coloops of M∗. Hence,
M = N ⊕ U0,2 and M∗ = N∗ ⊕ U2,2 where N
is an arbitrary binary matroid.

(ii) (B′
1)

∗ = B′
2 = B′

3 = ∅.
This means x ∼ y in M and x ≁ y in M∗.
Therefore, the collection of bases of two ma-
troids (M∗)xy and (Mxy)

∗ is
{
(B∗ : B∗ ∈

B∗, x, y /∈ B∗}. We conclude that every basis
of M∗ does not contain both x and y and so x
and y are loops of M∗ and coloops of M . Hence,
M = N ⊕ U2,2 and M∗ = N∗ ⊕ U0,2 where N
is an arbitrary binary matroid.

Conversely, suppose that x and y are loops of M .
Then M = N ⊕ U0,2 where N is a binary matroid.
Thus

• First by applying the split-off operation on two
elements of U0,2, we have Mxy = N ⊕ U0,1 and
then by duality, (Mxy)

∗ = N∗ ⊕ U1,1.

• First by duality, M∗ = N∗ ⊕ U2,2 and then by
applying the split-off operation on two elements
of U2,2, we have (M∗)xy = N∗ ⊕ U1,1.

Similarly, if x and y are coloops of M . Then
M = N⊕U2,2 where N is a binary matroid and x, y /∈
E(N). Therefore (M∗)xy = (Mxy)

∗ = N∗ ⊕ U0,1

and this completes the proof of the theorem.
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